

A company is interested in creating a new blended fruit drink. There are four fruit juices that will be blended together to form the resulting drink. Preliminary testing has led to constraints on the ranges of each individual juice. The experimenter has a panel of ten experts to taste the blends, and the response is the average of the ten taste responses.

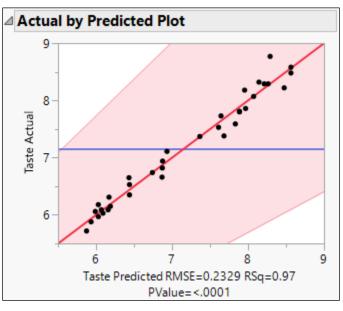
The component juices and ranges are as follows:

Apple juice, 0.33-0.67 Orange juice, 0.08-0.25 Pineapple juice, 0.12-0.29 Grapefruit juice, 0.04-0.21

- 1. Create a design that uses 35 or fewer runs and can estimate the Scheffé cubic model for the components. You can design the experiment from the start or use the **Fruit Juice Exercise** link in the journal.
- **2.** Use the **Fruit Juice Exercise Simulator** link in the journal to populate your response data. Analyze the model and find settings which predict the highest **Taste**.

A company is interested in creating a new blended fruit drink. There are four fruit juices that will be blended together to form the resulting drink. Preliminary testing has led to constraints on the ranges of each individual juice. The experimenter has a panel of ten experts to taste the blends, and the response is the average of the ten taste responses.

The component juices and ranges are as follows:


Apple juice, 0.33-0.67 Orange juice, 0.08-0.25 Pineapple juice, 0.12-0.29 Grapefruit juice, 0.04-0.21

- 1. Create a design that uses 35 or fewer runs and can estimate the Scheffé cubic model for the components. You can design the experiment from the start or use the **Fruit Juice Exercise** link in the journal.
 - **a.** If you want to load the responses and factors, click **Fruit Juice Exercise** in the journal, then go to step **f**.
 - **b.** Select **DOE** > **Custom Design**.
 - c. Double-click Y, then enter Taste.
 - d. In the Add N Factors box, enter 4, then click Add Factor > Mixture.
 - e. Enter the names and ranges of the factors as specified above.
 - f. Click Continue.
 - g. Click Scheffe Cubic.
 - h. Enter 35 in the User Specified field.
 - i. Click Make Design.
 - j. Click Make Table.
- **2.** Use the **Fruit Juice Exercise Simulator** link in the journal to populate your response data. Analyze the model and find settings which predict the highest **Taste**.
 - a. If you want the same data as in this solution, return to the journal and click Fruit Juice Data.
 - **b.** Otherwise, return to the journal and click **Fruit Juice Exercise Simulator**.
 - c. Click OK, then click OK again.
 - d. Click the green play button next to the Model table script.

Model Specification					
Select Columns	Pick Role Variable	25	Personality:	Standard Least Squares	~
 5 Columns Apple juice 		Taste onal	Emphasis:	Effect Screening	~
Orange juice	opu	onat]		
 Pineapple juice Grapefruit juice 	Weight opti	onal numeric	Help	Run	
A Taste	Freq opti	onal numeric	Recall	Keep dialog open	
	Validation opti	onal numeric	Remove		
	By opti	onal			
	Construct Model Add Cross Nest Macros Degree 2 Attributes Transform		e ce ce	~	

The full Scheffe cubic model is already specified by Custom Design.

e. Click Run.

The Actual by Predicted plot shows the model explains 97% of the variability in **Taste**. The standard deviation of the unexplained variation is 0.2329. The model is significant at $\alpha = 0.05$.

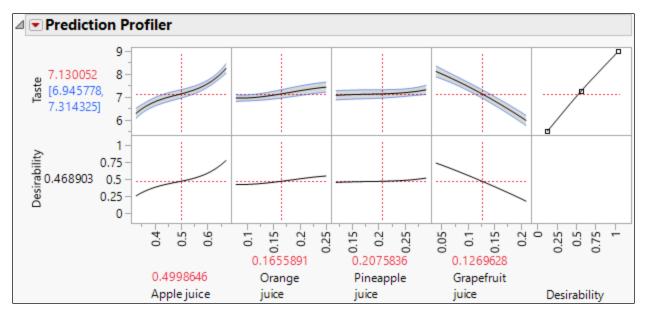
⊿	Effect Summary	
---	----------------	--

Source	Logworth	PValue
(Applejuice-0.33)/0.43	10.887	0.00000
(Pineapple juice-0.12)/0.43	0.773	0.16858
Apple juice*Orange juice*Pineapple juice	0.496	0.31921
Apple juice*Pineapple juice	0.483	0.32912
Orange juice*Pineapple juice	0.364	0.43270
Pineapple juice*Grapefruit juice*(Pineapple juice-Grapefruit juice)	0.350	0.44673
Drange juice*Pineapple juice*(Orange juice-Pineapple juice)	0.335	0.46266
Drange juice*Pineapple juice*Grapefruit juice	0.282	0.52250
Apple juice*Pineapple juice*Grapefruit juice	0.277	0.52843
Orangejuice-0.08)/0.43	0.262	0.54646
Pineapple juice*Grapefruit juice	0.216	0.60816
Apple juice*Orange juice*(Apple juice-Orange juice)	0.187	0.64964
Apple juice*Orange juice*Grapefruit juice	0.181	0.65939
Apple juice*Pineapple juice*(Apple juice-Pineapple juice)	0.144	0.71769
Apple juice*Orange juice	0.076	0.84016
Apple juice*Grapefruit juice	0.075	0.84206
Grapefruit juice-0.04)/0.43	0.069	0.85386
Drange juice*Grapefruit juice	0.032	0.92908
Apple juice*Grapefruit juice*(Apple juice-Grapefruit juice)	0.028	0.93730
Orange juice*Grapefruit juice*(Orange juice-Grapefruit juice)	0.009	0.98010

The Effect Summary report shows many nonsignificant terms. Reduce the model by removing nonsignificant terms, one at a time, starting at the bottom and obeying hierarchy. Do not remove terms with the ^ symbol. Do not remove main effects. Use α = 0.05.

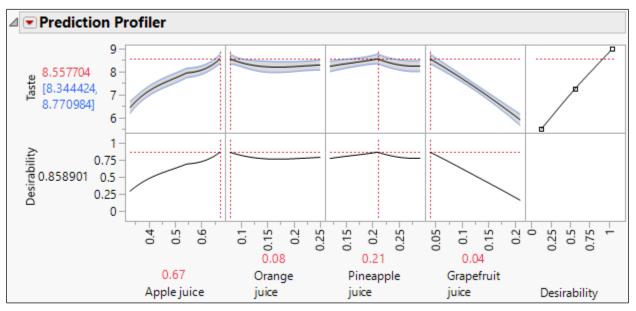
- f. Select Orange juice*Grapefruit juice*(Orange juice–Grapefruit juice) then click Remove.
- g. Repeat for all nonsignificant effects.

Source	Logworth	PValue
(Applejuice-0.33)/0.43	21.394	0.00000
(Pineapple juice-0.12)/0.43	12.015	0.00000
Apple juice*Pineapple juice	4.684	0.00002
Apple juice*Orange juice*Pineapple juice	1.555	0.02786
Apple juice*Orange juice*(Apple juice-Orange juice)	1.502	0.03148
Orange juice*Grapefruit juice	1.446	0.03577
Orange juice*Pineapple juice*(Orange juice-Pineapple juice)	1.424	0.03768
(Orange juice-0.08)/0.43	0.877	0.13283
Orange juice*Pineapple juice	0.859	0.13821
(Grapefruit juice-0.04)/0.43	0.535	0.29192
Apple juice*Orange juice	0.265	0.54353


The reduced model is shown.

In the Actual by Predicted plot, you can see that RSq remains at 97%, but RMSE has been reduced.

In the Residual by Predicted plot, there are no unusual patterns.


Proceed to finding settings which optimize Taste.

h. Examine the Prediction Profiler.

Taste is predicted to be about 7.1 when all factors are set to their middle level. The nonlinearity of the cubic design can clearly be seen. Changing the values of a factor setting will change the values of the other factor settings since the factors are mixture components. Optimize the response.

i. Click the red triangle next to Prediction Profiler and select Optimization and Desirability > Maximize Desirability.

The optimal settings of 2/3 apple juice, 1/5 pineapple juice, and a small amount of orange and grapefruit juice predict a **Taste** value of about 8.5. It's time to confirm these settings. Juice, anyone?