Smart Experimentation for Scientists and Engineers

Company Confidential – For Internal Use Only Copyright © SAS Institute Inc. All rights reserved.

Optimizing Multiple Responses

In these exercises, you explore the results of the Anodize experiment introduced in the videos on Day 5.

These data are in the file Anodize.jmp.

Optimizing Multiple Responses 1

Questions:

- 1. In JMP open the file and run the saved script **Fit Group Reduced**. This script produces a window with reduced models for each response. Which effects are in the reduced model for the response **a***?
- 2. Select **Profiler** from the top red triangle next to **Fit Group**. What is the starting value for **Acid Conc**? What is the predicted value for **Thickness***? What do the bracketed values for **Thickness** represent?
- 3. Double-click in the desirability box for L*. (Highlighted in orange in image on next page. Make sure that you don't double-click near the curve. Click in the open space in the box.) What is the response goal for L*? What is the target value? What are the acceptable response limits?

Optimizing Multiple Responses 1

Solutions:

1. In JMP open the file and run the saved script **Fit Group Reduced**. This script produces a window with reduced models for each response. Which effects are in the reduced model for the response **a***?

Only the main effects: Anodize Temp, Anodize Time, Dye pH, Acid Conc, and Dye Conc.

2. Select **Profiler** from the top red triangle next to **Fit Group**. What is the starting value for **Acid Conc**? What is the predicted value for **Thickness***? What do the bracketed values for **Thickness** represent?

The starting value for Acid Conc is 187.5. The predicted value for Thickness is 0.744. The bracketed values are a 95% CI for the mean thickness at the starting values.

3. Double-click in the desirability box for L*. What is the response goal for L*? What is the target value? What are the acceptable response limits?

The goal is Match Target. The target is 10. The acceptable limits are 8 to 12.

Optimizing Multiple Responses 2

Questions:

- 1. From the data table run the script **Profiler 1**. This script has been saved with optimal settings for the factors. What is the optimal setting of **Anodize Time**?
- 2. What is the predicted L* for these settings? Is it close to the target?
- 3. Close this window and run the script **Profiler 2**. This script runs a simulation in which variation in the factors and responses have been added. Click the **Simulate** button several times. What is the predicted defect rate?
- 4. Change the standard deviation (SD) for Anodize Temp to 0.75. Click the Simulate button several times. What is the predicted defect rate now?

, mp

Copyright © SAS Institute Inc. All rights reserved.

Optimizing Multiple Responses 2

Solutions:

1. From the data table run the script **Profiler 1**. This script has been saved with optimal settings for the factors. What is the optimal setting of **Anodize Time**?

The optimal setting of Anodize Time is 40.

2. What is the predicted L* for these settings? Is it close to the target?

The predicted value of L* is 9.49. It's slightly lower than the target value, but it is within the acceptable response limits.

3. Close this window and run the script **Profiler 2**. This script runs a simulation in which variation in the factors and responses have been added. Click the **Simulate** button several times. What is the predicted defect rate?

The predicted defect rate is between around 0.6% and 0.9%.

4. Change the standard deviation for **Anodize Temp** to 0.75. Click the **Simulate** button several times. What is the predicted defect rate now?

After reducing the standard deviation for **Anodize Temp**, the predicted defect rate is approximately 0.1%.

